An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
نویسندگان
چکیده مقاله:
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly based on the Green's function approach, has been proved. Numerical illustration demonstrate the applicability of the purposed method. Three test problems have been solved and the computed results have been compared with the results obtained by recent existing methods to verify the accurate nature of our method.
منابع مشابه
SPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS
The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.
متن کاملB-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems
In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.
متن کاملB-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy
In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...
متن کاملQuartic spline collocation for second-order boundary value problems
Collocation methods based on quartic splines are presented for second-order two-point boundary value problems. In order to obtain a uniquely solvable linear system for the degrees of freedom of the quartic spline collocation approximation, in addition to the boundary conditions specified by the problem, extra boundary or near-boundary conditions are introduced. Non-optimal (fourth-order) and op...
متن کاملB-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS
In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.
متن کاملb-spline finite element method for solving linear system of second-order boundary value problems
in this paper, we solve a linear system of second-order boundary value problems by using the quadratic b-spline nite el- ement method (fem). the performance of the method is tested on one model problem. comparisons are made with both the analyti- cal solution and some recent results.the obtained numerical results show that the method is ecient.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 27- 46
تاریخ انتشار 2018-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023